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Abstract: The Homerun Explorer provides an exploratory search service on 
many million records of geo data. It supports symbolic and geometric condi-
tions as well as spatial joins. A user can deal with large result sets and itera-
tively refine a search. Predefined indexes allow the quick execution even on 
desktop computes without the need of powerful servers. 
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1 Introduction 

Large geo data pools such as Open Street Map (OSM) [2] have some similarities to 
World Wide Web resources: from the many million or even billion entries, a user 
often is only interested in a small subset. Current approaches for textual searches as 
used in Web search engines have limitation, if queries contain spatial conditions: pure 
text queries can only retrieve documents that explicitly mention this location as a text, 
e.g. as a city name. Text search engines fail for more complex spatial queries such as 
'not nearby position xy', as these queries need to evaluate geometric conditions. If 
queries spatially relate objects to other objects that are only implicitly defined by their 
type (e.g. 'all farms that are not near to a waste deposit'), we talk about spatial joins 
[13]. Such queries are virtually impossible for purely text-based searches. 

In this paper we introduce the search platform Homerun Explorer: 

 It supports combined symbolic and spatial search as well as spatial joins. 
 It supports the user to enter complex combined queries. 
 The system supports exploratory search.  

Exploratory search means, the user does not exactly plan a query, but just begins to 
enter the knowledge about the desired geo objects. After she or he received a search 
feed-back, the query can immediately be refined. The user repeats, until the results 
meet the expectations. Exploratory search has high demands on the search system: it 



should accept inaccurate input (e.g. misspelled text) and the response time must be 
very low (not more than a few seconds). 

2 Related Work 

The tools in the first place that deal with geo information are GIS (Geo Information 
Systems) [14]. They use so-called map overlays to combine different object attributes 
to a new representation. An overlay formulates conditions that can both consider the-
matic data (such as type or object properties) and object geometries. They can be 
combined by operations such as union, intersection, or difference. GIS searches have 
important differences to our intended search: 

 In GIS, the search process is not exploratory but systematic, i.e. the map overlay 
steps are properly planned a priori. They are based on a certain and well-defined 
data analysis task. 

 In GIS, the output of a search often is a large set of objects. Analysis results are 
thus object counts, averages or spatial distributions or statistic results. In contrast, 
our intended search tries to recover certain objects from a huge number of geo ob-
jects. 

Searches that focus on texts are widely known in the area of the World Wide Web [1]. 
Similar mechanisms can be used locally, e.g. to search documents in file systems or 
document repositories. Special add-ons such as Lucene [3] allow a developer to 
search texts in traditional relational databases. Even though text search engines nowa-
days have complex mechanisms, especially for indexing, they mainly look up texts in 
documents without to know the actual meaning. This especially is a problem, if we 
have to deal with ambiguity (see section 3.1). Moreover, text search engines can only 
deal with locations, if they explicitly appear as text. E.g., we can only find texts that 
are related to the city Nuremberg, if the word 'Nuremberg' appears in a document, and 
not only a name of a quarter of Nuremberg. Complex geometric constraints such as 
'nearer than 500 m to a certain position' or 'not nearer than 20 km to the next nuclear 
power plant' are not searchable at all, unless these texts incidentally appear word by 
word in a document. 

Pure map platforms such as Google Maps [15], in contrast, basically rely on map 
display. Usually, they provide a text search facility that places result markers on the 
map, but: 

 They do not provide a real combination of spatial and textual searches.  
 They mainly provide a search of Points of Interests (POIs), i.e. point-like objects. 
 They usually do not provide capabilities for spatial joining (see section 3.3). 
 The search engines run on powerful server environments. It is not possible to 

execute queries on a local database. 

Even though such tools have certain drawbacks, they heavily inspired our work.  



3 The Homerun Explorer 

The Homerun Explorer is one component of the Homerun environment [4]. Homerun 
provides a platform for low-cost developments in the area of location-based services, 
especially of small services outside the mass market. It imports data from Open Street 
Map into an own database structure, provides map rendering with the dorenda envi-
ronment and street navigation with donavio [6, 7, 8, 9, 10]. Client platforms support 
desktop computers as well as mobile devices [11].  

The development of the Homerun Explorer was driven by a certain demand: after 
importing large data sets (e.g. 21 million records of 'Germany' data), it was very diffi-
cult to find certain objects, e.g. a special shop in a city. Until now, it was only possi-
ble to query an object by its exactly known position or its exact name. Fuzzily defined 
queries such as 'near… that has a name like…' were not possible. 

 

 

Fig. 1. The Homerun Explorer main window 

Fig. 1 shows the main window. Symbolic conditions are entered in the upper area. 
General attributes (lower left corner) can restrict results to object types such as 'only 
traffic objects with line geometries'. Results are presented as list (left) and on a zoom-
able map (center). If results appear outside the current view, they are represented as 
small arrows on the map border. 

Fig. 2 shows the basic data flow for query execution. All parts of a query are 
passed to the Symbolic and Spatial Search Engine. Each engine can restrict the other 
engine (see section 3.4) to avoid large intermediate results. The two results are inter-
sected, i.e. all query components are combined by logical AND. 



 

 

Fig. 2. The basic data flow 

The search indexes remain in the application's working memory. To keep them as 
small as possible, they only store search-related data. As the final result should dis-
play all object properties, additional data has to be loaded from the persistent data-
base. Results are ordered by their relevance and cut to a maximum length. 

3.1 Symbolic Search 

The Homerun Explorer accepts texts that specify name, type or locality of geo objects 
or any combination of these. Our symbolic search system fulfills the following goals: 

 A user is not requested to learn a special structured input. She or he can type an 
arbitrary sequence of words in a text line. 

 Whenever the user pauses text typing for 1000 ms, the next query is executed in 
the background. The user always gets a feedback to the current query. As a conse-
quence, query processing has to provide high responsiveness and our search must 
be able to look up incomplete prefixes. 

 The user does not necessarily have to know the correct spelling of, e.g. names. 
Thus, we have to provide fuzzy search. We have different degrees of text matches, 
ranging from exact spelling, some misspellings to equality of the double meta-
phone [12] that only considers the basic pronunciation. 

In contrast to Web searches, our search texts formulate queries to geo objects. Thus, 
texts both cover object descriptions (e.g. names) as well as texts that describe their 
locality. E.g. in the search text 



'China Restaurant Wing Tan Nuremberg Munich Avenue' 

we have the following structure: 

 'China Restaurant' describes the class (i.e. type) of the object; 
 'Wing Tan' describes the name of the object; 
 both 'Nuremberg' and 'Munich Avenue' describe the locality. 

The meaning of each word (name, class or locality) is discovered by our search en-
gine. The user may change the word ordering. The result remains same, as long as 
words that belong to the same meaning still appear in the same order, e.g. 

'Munich Avenue Nuremberg Wing Tan China Restaurant' 

is similar to the search above, but 

'Nuremberg Avenue Munich Wing Tan Restaurant China' 

may look for any restaurant (not necessarily a China restaurant) in different places 
(also in China). We assume a maximum of four different parts of textual queries, we 
call query elements: 

 The name of a geo object.  
 The classification of an object (e.g. restaurant, road, shop, tree, lake). As a class 

can be described with different words, we use a synonym list. 
 A description of the locality. We can identify the following localities: countries, 

states, regions, cities, districts and streets. 
 A second description of locality. With the two locality entries we can specify e.g. 

street or district in a city, or a city in a region. 

In principle, we could add more descriptions of locality, but typical searches do not 
contain more than two. Note that a query does not necessarily have to contain all four 
query elements. E.g., very often, meaningful names already completely identify an 
object. 

For a textual query, we have to map query words to their intended meaning. A na-
ïve approach would use a dictionary that contains the meaning of each word, e.g. 
Nuremberg  City, Franconia  Region. This approach does not work, as a user can 
enter arbitrary unknown words. In addition, many words have multiple meanings. As 
an example, in the query 'Nürnberger Hof' we got the following possible interpreta-
tions: 

 'Nürnberger Hof' is the name of a restaurant in Wiesbaden; 
 'Hof' is a German object class name for 'a farm'; 
 'Hof' is a city in Bavaria, i.e. a locality; 
 'Nürnberger' could express the locality of Nuremberg. 

We have to face two problems: first, how does the search engine deal with ambiguity; 
second: how do we communicate the different interpretations to the user. To start with 
the second issue: we present all results that are based on any possible interpretation to 



the user, but rank it by a hit rate. The hit rate indicates the probability that a user actu-
ally intended a specific meaning. It is based on two factors: 

 The covered query elements: we assign a base rank to each query element (highest: 
name, then locality, lowest: class). This takes into account that a name often fully 
identifies an object. 

 A match rank for each query element: for this, we compute a distance between 
query words and actual words in the database. Exact spelling receives a high value, 
whereas double metaphone matches only low values. 

The final hit rank is the dot product of base rank and match rank. 
To deal with ambiguity, we use a brute force approach. We iterate through all pos-

sible assigns of input words to the maximum of our four query elements, whereas 
inside a query element the word sequence must be the same as in the query. E.g. three 
valid assigns of the first query above are 

 name='Nuremberg Avenue Munich Wing', class='Tan Restaurant China'; 
 name='Avenue', class='Tan Nuremberg Munich', locality1='China Restaurant 

Wing';  
 name='Wing Tan', class='China Restaurant', locality1='Munich Avenue', local-

ity2='Nuremberg'.  

Obviously, most of the combinations are not reasonable. Only those combinations that 
get results in the database for all assigned query elements are collected, thus reason-
able combinations are implicitly found (e.g. the third one above). To limit the total 
number of combinations, we restrict the number of words per query element to 4. For 
the query above with 7 words, we get a total of 792 combinations. The overall maxi-
mum of combinations is 1200 (for 9 and 10 query words), thus always remains rea-
sonably low. In addition, some combinations can be removed: 

 As the two locality entries are considered as equal, different combinations with 
swapped locality1 and locality2 are reduced to one combination. 

 If only a locality and neither name nor class are described, this query may return 
too many hits, thus is removed. In this case, the user usually intended to describe 
the object name. 

For each combination, we query our data and compute the corresponding rank. If the 
rank is above a certain limit, the result is added. 

Sometimes, the same object is retrieved by different combinations. This is because 
object class and locality are part of many names. E.g., the name 'Ohm University Nur-
emberg' both contains the object class (university) and city (Nuremberg). Corre-
sponding queries would receive multiple hits. Thus, whenever an object appears mul-
tiple times in the result, only the one with the highest rank is kept.  

 
Search Preparations 
In the original Open Street Map database, contributors are free to classify objects. 
OSM mainly provides an informal classification based on key-value pairs. They do 



not have to meet certain formal requirements. The OSM classification is very elabo-
rative and often causes ambiguity. E.g., there are at least 3 ways to classify a 'coffee 
bar'. Moreover, it is based on strings that are difficult to look up in databases and do 
not represent a class-to-subclass relation. In [9] we present more issues of the original 
OSM classification. As a consequence, we store imported geo data in an own rela-
tional database with a strict classification schema. During the import from OSM data 
into our database, we pre-compute the following object properties: 

 The object class: we express objects classes by an integer number that represents a 
classification hierarchy [6, 7]. As an important benefit: subtrees of classes can be 
represented by number intervals. E.g. 'all restaurants' are represented by a certain 
interval [i, j] whereas 'Italian restaurants' are represented by a smaller interval 
[i2, j2][i, j]. This enables quick indexing mechanisms of SQL databases. The 
mapping of original OSM classifications to our classification numbers uses a rule-
based approach with several thousands rules. 

 The name: from the different ways to express a name in OSM we extract the most 
meaningful one. Note that the most meaningful name depends on the actual object 
class. E.g. motorways, streets and cities have different tags to express their name. 

 The is-in-relation: For each object we detect all important surrounding objects (i.e. 
where an object 'is-in'). Usually these larger objects (i.e. our localities) are coun-
tries, states, regions, cities, districts and streets. The is-in-relation is not an 
obligatory part of an OSM description. Thus, our import uses a time-consuming 
mechanism to create the is-in-relation for all objects. 

For each classification we defined a list of synonyms that may occur in a query. E.g., 
for the class 'Italian restaurant' we store: 'Pizzeria', 'Italian Restaurant', 'Restaurant', 
'Italian', 'Pizza', 'Pasta'. 
 
Looking up Texts 
The pre-computation enables to quickly check classes and localities. However, 
searches based on texts are still difficult for SQL databases: first, pure SQL only sup-
ports exact matches of strings and substrings, second substring searches cannot use 
column indexes, thus mainly compare with all rows. To check texts during typing a 
query, we thus use own indexes stored in the runtime memory. Our approach works 
as follows: 

 All searchable strings (i.e. object names, class names including synomyms and 
locality names) are first simplified according to typical misspellings. E.g. all long 
'i' vowels in German ('ie', 'ii', 'ih', 'ieh') are unified to a single representation. 

 We iterate through all leading substrings with a predefined minimum length (cur-
rently 3 letters) and store them in a prefix hashtable. For e.g., Nuremberg, we 
store 'Nur', 'Nure', 'Nurem', … 'Nuremberg' as searchable keys with a reference to 
the Nuremberg object. 

 In addition we store the double metaphone string in another hashtable. 

If the user now enters the leading string 'Nur', the prefix hashtable returns the Nur-
emberg object, bus also 'Nurmistraße', 'Nurtschweg', 'Nurbanum', 'Nurda-Park' etc. 



For the double metaphone 'NR' of 'Nur' we get 'Neuwöhr', 'Nohra', 'Neuweier', 'Nouar', 
'Noer', 'Nierow' etc. from the double metaphone hashtable.  

If a name has multiple words (separated by, e.g., blank or '-'), we also store these 
entries for subsets of words. Thus, a user may omit some words in a query. 

As hashtables work with nearly constant time without any iterative search, all these 
hits are returned immediately. For name, class and locality we have separate sets of 
hashtables. We check all query elements – a final result must appear in all involved 
hashtable hits. 

3.2 Spatial Search 

Some localities cannot be expressed as texts, or the user does not know a textual de-
scription of it. E.g. the condition '500 m around a certain position' can only be for-
mulated geometrically. For such queries, a map is inevitable. A user can define rec-
tangles, circles or arbitrary free-hand forms to define a selection. 

 

   

Fig. 3. User-defined spatial selections 



Fig. 3 left shows a query for hotels inside a certain circle. 'Hotel' is entered in the 
textual area and interpreted as class description. Fig. 3 right shows a free-hand selec-
tion for the same query. Without any further conditions a 'Hotel' query would return 
all hotels in the database. 

3.3 Spatial Joins 

For explicit geometric conditions as presented above, the user already knows the lo-
cality (e.g. inside a selection circle, or given by the city name). In contrast, the spatial 
join expresses conditions for objects of unknown locations. Similar to a table join in 
relational databases, a spatial join relates two potentially large sets of rows to a 
smaller set where each pair fulfils a certain condition. Typical spatial join conditions 
are 'closer than' or 'farther than'. Thus, we can formulate queries such as 'nearer than 
200 meters to any river' or 'farther than 10 km to any nuclear power plant' without to 
know its actual location. 

 

 

Fig. 4. A spatial join query  

Fig. 4 shows an example: the user wants to look up hotels near a river (up to 200 m 
distance), without explicitly selecting a specific region or telling which river. The tool 
thus automatically computes the area of potential hits around all rivers. The text input 
'Hotel' then finds all relevant hotels. With the spatial join, we could further query, 



e.g.: 'all computer game shops that are near to a computer seller', 'all Italian restau-
rants near to any metro station', 'all hotels that are not close to a highway' or 'all 
nuclear power plants that are close to coast'. 

The approach to join works as follows: 

 We first look up the objects that are focus of the join (e.g. 'all rivers'). We create 
the sum geometry of those objects. 

 The sum geometry is enlarged using the geometric buffer operation [5]. The buffer 
radius is the distance of the join request (e.g. 200 m in the query above). Note that 
the result of a buffer is a polygonal area, sometimes with holes, even though the 
input geometry only consists of points and line strings. Further note that coordi-
nates are stored as pairs of latitude/longitude, but the distance is expressed in me-
ters, thus we have to use the great circle formula to compute the buffer. 

 If the user wants to query objects that are 'farther than', the buffer area is inverted 
i.e. the result represents the area outside the buffer region. 

 The resulting area is used as a geometric condition, similar to a user-selected area. 

Spatial joins produce large intermediate results. E.g. the 10 km region around any 
river in the database is very large, thus we have to incorporate mechanisms to reduce 
the result set as described in the next section.  

3.4 Dealing with Large Result Sets 

Queries can produce large results. If e.g. the user enters a text that only specifies an 
object class without any locality, some thousands or even million entries would 
match. We have to face two problems: 

 For large results, fetching the information from the database would take a long 
time.  

 Large result lists are difficult to present to the user. First, the textual hit list could 
be too large to get an overview. Second, the hit markers on the map could be drawn 
too densely to be useful. 

These effects would conflict our major goal: we encourage the user to exploratory 
browse the system in a trial and error manner. Thus, results must appear quickly and 
the user should always keep overview. 

For each pattern of symbolic condition (S), geometric selection (G) and spatial join 
(J) we defined a strategy to limit the results as presented in table 1. The table de-
scribes how the symbolic and spatial join searches are restricted. If a geometric selec-
tion is available, the symbolic search does not have to produce million results that are 
finally reduced to few hits due to the final intersection. Thus, the symbolic search 
engine directly considers the geometric condition and only checks relevant symbolic 
hits.  

 



Table 1. Restricting search results 

Pat-
tern 

Meaning 
Symbolic 

search 
restriction 

Spatial 
join  

restriction 

Result  
restriction 

S All objects matching the search 
text. 

no n/a 

SG All objects inside the user se-
lection matching the search 
text. 

Geom. 
User 

Selection 
n/a 

SJ All objects that match the 
search text and that are nearer 
or farther to all objects of a 
certain class. 

no 

Symb. Cond. or 
multiples of 

displayed map 
area 

SGJ All objects inside the user se-
lection matching the search text 
and that are nearer or farther to 
all objects of a certain class. 

Geom. 
User 

Selection 

Geom. User  
Selection 

Ordered by sym-
bolic hit rank.  
The result list  

is cut to a 
maximum length. 

 

G All objects at all inside the user 
selection. 

n/a n/a 

J All objects at all, nearer or far-
ther to all objects of a certain 
class. 

n/a 
Multiples of 

displayed map 
area 

GJ All objects inside the user se-
lection nearer or farther to all 
objects of a certain class. 

n/a 
Geom. User 

Selection 

If result exceeds 
a max. length, 
entries are re-

moved according 
to their distance 
to the displayed 

map centre. 

 
If a spatial join is combined with a geometric selection, it is obvious to restrict the 
join area to this selection. For pattern SJ the symbolic results provide good restriction, 
if they are all close-by. If not, or if the join is the only condition in the query (pattern 
J), we use multiples of the displayed map area to restrict the join: we then extend the 
map area in all four main directions to get a 9 times larger area. As users mainly focus 
on the displayed area, this approach is reasonable. 

The result list of all query patterns is cut to a maximum length (currently 2000 
hits). If the query contains a symbolic condition, the hits are ordered by their hit rank 
(section 3.1) and hits with lowest ranks beyond the maximum list length are removed. 
For query patterns without any symbolic condition, we order the hits by their geomet-
ric distance to the displayed map centre. Thus, only hits far from the visible centre are 
removed. If the user scrolls through the map, the query has to be recomputed as other 
hits may appear. 

We integrated a further mechanism not shown in table 1: we consider the current 
map zoom level to remove too small and too large objects from the result set. If the 
map shows a large area (e.g. more than a city), small objects are not displayed as the 
user cannot properly identify their location. On the other hand, if the displayed area is 



small (e.g. shows only some buildings), it is not reasonable to show large polygons 
that may cover multiples screens. 

4 Conclusions and Future Work 

The Homerun Explorer allows user to deal with large geo databases; it enables ex-
ploratory search of combined textual and spatial queries and supports spatial joins. It 
deals with fuzzily defined queries, handles large results and provides quick overview 
of results. The user does not have to learn a special input structure for texts. In con-
trast to pure text searches, our environment discovers the meaning of query strings 
and executes a structured search. 

To the three query types (symbolic, spatial selection and spatial join) we want to 
add a further type in the future: isochrones. With isochrones we can express condi-
tions such as: 'all positions that can be reached by a 30 minute car ride', or '5 min 
walk to any subway station'. For this, we want to integrate the donavio navigation 
environment into the Homerun Explorer. 
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