
From Weak to Strong Geo Object Classification

Jörg Roth

Nuremberg Institute of Technology, Germany, Joerg.Roth@th-nuernberg.de

Abstract

Many geo sources are based on a weak classification to identify types of objects. Contributors can enter their knowledge
about an object using tags of key-value pairs. Even though tags have no limits regarding expressiveness, automatic proc-
essing is difficult. We identified seven major problems where applications are not able to undoubtedly identify certain object
types, have certain problems with subclasses or cannot detect object properties. As a solution, we propose the strong classifi-
cation that strictly identifies classes, subclasses and properties. The major challenge is to map existing weakly classified
objects to our strong classification. We introduce a mapping environment that uses a rule-based approach and provides tools
to analyse the data source, rule set and mapping results.

Key Words: geo data, geo object classification, strong classification, object tagging

1. Introduction

Geo data is the 'raw material' for all types of location-based applications. Nowadays, geo data is avail-
able from a variety of geo data sources. The open geo data source Open Street Map (OSM) is currently
very popular and collected approx. 26 million objects (as at Aug. 2013) only in the area of Germany.

The classification is besides the geometric shape the most important information about a geo object. It
enables applications to distinguish, e.g., roads, shops, lakes or trees. For a map renderer, it controls
how an object is painted (symbol icon, colour or line properties). For route-planning, the classification
of a road defines the average and maximum speed, whether a certain means of transportation is al-
lowed to drive and identifies one-way directions. For look-up-services, it allows a user to focus on
certain object categories, e.g. hotels or restaurants.

Even though the classification is extremely important, many geo data sources only use a weak classifi-
cation based on tags. User-defined tags are often difficult to understand by applications. In contrast, a
strong classification allows an application to undoubtedly identify object classes. We often find strong
classifications in data of land survey offices. The ATKIS schema of the German land survey office [1,
2], e.g., uses a four digit number to distinguish geo object classes. Tiger/line (US Census) [3] distin-
guishes approx. 800 object classes. However, even strong, these classes are not prepared to represent
the huge variety of different object types we usually find in geo data sources nowadays. They are very
restricted regarding subclassing and object properties. Most important, they do not support a mapping
from widely available weakly classified data sources to their own representation.

2. Weak Geo Object Classification

A weak classification assigns a list of tags to each object; each contains a key and value. The first row
in tab. 1, e.g., defines an Italian restaurant with certain daily opening hours. This classification is easy

to read for people. Keys such as cuisine and opening_hour are predefined, but contributors have

the flexibility to define new keys if existing keys are not suitable to describe an object. Usually, weak
classifications are subject of community discussions and suitable key-value combinations are only
loosely defined by guidelines. The drawback: the non-formal notation is difficult the process by soft-
ware and keys do not have an obvious meaning for applications. We discuss the problems of weak
classifications using the example of Open Street Map.

2.1 Open Street Map

The Open Street Map project follows the community idea to collect geo data. Consequently, the weak
classification approach is ideal for typical contributors. As many OSM users contribute at irregular
intervals, an easy classification schema is important:

 Web-based guidelines [4] provide typical classification patters. Guidelines often look like 'for a

certain tag s1=v1, there should be a tag s2=…'. E.g. 'for amenity=restaurant, there should be

cuisine=… to identify the type of restaurant'.

 During the online-contribution process, the user interface can suggest a list of keys for a specific
object. For this, a user can inspect similar objects in the database.

 Users may ignore suggestions and guidelines and can enter arbitrary new tag combinations. The
system accepts such contributions. Maybe they will be changed by other users.

The last point is both advantage and disadvantage: on the one hand, a community system must be able
to accept new object types, thus must be extendable. On the other hand, new keys or tag combinations
have to be learnt, both by users and software.

Tab. 1: OSM classification examples

Tags Meaning
amenity=restaurant, cuisine=italian,
opening_hours=17:00-24:00

an Italian restaurant with certain open-
ing hours

highway=motorway, lanes=2, layer=1, lit=no,
maxspeed=80, oneway=yes, surface=concrete a motorway with some properties

amenity=cinema, phone=+49911…,
wheelchair=yes, name=CineABC

a cinema with name and phone; acces-
sible by wheelchairs

amenity=post_box, collection_times=Mo-Fr
16:00; Sa 13:45, operator=Post

a post box with collection time and op-
erator

Tab. 1 shows some classification examples. Looking deeper into the meaning of these tag combina-
tions, we can identify three different tag roles:

 a main class (e.g. amenity=..., highway=...), represented by a certain key assigns a top-

level classification;

 subclass tags (e.g. amenity=restaurant in combination with cuisine=italian) specify the

object class more specific;

 object properties (e.g. opening_hours=17:00-24:00, wheelchair=yes, lanes=2) specify

further attributes of the object within a certain object class.

The classification can roughly be compared to object-oriented software components, with the notion of
classes, subclasses and attributes. Note that there is a smooth transition between properties and sub-
classes, also for geo objects. As an example: we could also introduce a two-lane highway as a certain
subclass, avoiding the number of lanes as property. As in object-oriented development, the role of
properties is usually obvious for a certain usage scenario.

2.2 Weak Classification Problems

The weak classification has certain drawbacks, especially, if applications should automatically under-
stand and process classifications. The major drawbacks are:

Tag ambiguity

For a certain tag inside a classification, it is difficult to detect its role (main class, subclass, or prop-
erty). Object tags are not ordered. We, e.g., cannot expect the first tag to indicate the main class. We
also cannot build a dictionary of keys and their role, because many keys play different roles in differ-

ent combinations. An example is the building key: it may indicate a main class, if no other tags

follow. It can be a property of objects that both can exist with or without a building. Finally, it may
indicate a certain subclass of a general building.

Non-uniqueness

Contributors may assign different sets of tags to express the same meaning. This can be either because
the guidelines changed after a contribution has been stored or there is a certain overlap of classifica-
tions. E.g.:

 for coffee bars we find the tags amenity=cafe or shop=coffee as well as further variations;

 combined foot and bicycle ways can either be highway=cycleway, foot=yes (actually a cycle-

way that also allows pedestrians) or highway=footway, bicycle=yes (actually a foot way that

also allows bicycles).

As a result, it is difficult to define equality of classes.

Over-classification

Objects often contain redundant tags that do not provide additional information as a certain class im-

plicitly defines some properties. E.g. for motorways, the tags bicycle=no, foot=no, horse=no are

not required as these means of transportation are not allowed on motorways. But nevertheless, they are
often stored. Another example: even though there exists a default speed limit in cities (e.g. 50 km/h in
Germany), some road objects explicitly state this speed limit. Such redundant information is a problem
for automatic processing as these tags have to automatically be removed.

Polymorphic objects

Some geo objects have more than one facet, as they actually represent multiple objects by a single ge-
ometry. E.g. some stationary shops offer a post office counter, many hotels are with a restaurant, or
touristic viewpoints may reside on a mountain peak. Contributors can deal with such objects in two
ways: they may create two objects at the same place (i.e. with the same geometric shape) or they may
create one object that holds tags of both object facets. Even though we can find both ways in typical
sources, the second way reflects much more the reality, as it respects the object identity. If, e.g. the
stationary shop offers a post office counter, changing and removing the database entry should always
affect both facets, as they actually belong to a single object. For the weak classification polymorphic
objects may cause a problem, as it is not obvious which tag belongs to which facet. This is a problem
in particular for object properties.

Obscure subclasses

Sometimes it is easy to check, whether a classification describes an upper or subclass of another class.

E.g. amenity=restaurant without a cuisine tag describes any restaurant, thus can be considered as

upper class of Italian restaurant. Unfortunately, upper classes often use completely different tag com-
binations, thus cannot easily be discovered. As an example:

 a park area is indicated by leisure=park;

 a barbecuing area is indicated by amenity=bbq, fireplace=yes;

 a picnic area is indicated by tourism=picnic_site.

Even though we could consider barbecuing and picnic places as subclasses of park areas, their tags
have nothing in common; even worse, their main class keys are different. As a result, there is no ef-
fective way the discover subclass objects.

String-related issues

Storing tags means always to store strings. Strings have certain drawbacks:

 They require a high amount of space. This is a problem, if we want to use small devices such as
smart phones to store geo data. This also may be a problem for communication.

 They are more difficult to search in databases. Consider an SQL statement that looks up all Italian

restaurants that are accessible by wheelchair. The WHERE clause would contain complex LIKE

conditions, and may require programmatically filtering the database results. In addition, strings are
only partly supported by column indexes, thus such queries would execute very slowly.

We could integrate textual search engines and compression techniques on top of a database. However,
these would not solve all problems.

Contributor-related issues

The weak classification shifts most of the responsibility for correct categorization to contributors. As
guidelines are only informal without the ability for a formal check, a contributor should carefully read
and respect the guidelines to formulate tags. As a certain classification cannot be automatically be
checked, many tags are wrong or misleading. Even worse: as the guidelines evolve over time, a con-
tributor should study these guidelines again and again for any new object and should correct old con-
tributions, if they do not meet new guidelines anymore.

Note that contributors, even willing, are not always able to spend much time whenever they enter new
geo objects. As a consequence, the data source does not always reflect all guidelines. A typical snap-
shot contains objects of different classification 'ages' and even out-dated guidelines left their foot
prints in the data set.

3. Strong Geo Object Classification with HomeRun

As a result of the problems above, equality of classes and subclass relations are difficult to check, and
it is difficult to identify object properties. String-based tags are not suitable for efficient processing
and storing. Finally, tagging guidelines often are not respected or out-dated. To solve these problems,
we suggest a strong classification approach as used in the HomeRun project [7, 8]. It includes a model
to classify objects and to build up class hierarchies, rules to control the mapping of weak to strong
classification, a tool environment to analyse classifications in the data source and to check the map-
ping results. Finally, it provides a software library to execute the mapping and to access class proper-
ties at runtime.

3.1 The Classification Model

The first improvement is: our model actually has classes. The huge number of possible tag permuta-
tions in the weak classification contradicts the idea of classes. In contrast, our strong classification
model propagates classes with subclasses and properties.

HomeRun geo objects are based on single inheritance and allow multiple classes per instance. Note
that the approach of multiple classes per instance does not have an analogy in object-oriented software
classes, especially should not be confused with multiple inheritance (multiple upper classes per class).

We assign multiple classes to address the problem of polymorphic geo objects. In principle, we could
create complex, combined upper classes for such objects, e.g. 'Hotel/Restaurant' or 'Stationary shop/
Post office'. But in real geo databases, polymorphic objects appear in huge numbers of different com-
binations, thus the amount of complex upper classes would be very high. Even though multiple classes
per instance increase lookup costs, this approach achieves the required expressiveness.

We use integer numbers to identify classes. Equality of classes is mapped to equality of numbers. A
class csub is subclass of c (denoted csub c) iff there exists i>0 where c mod 10i = 0 AND 0<csub-c<10i.
As an example: 20501257 (Italian Restaurant) 20501250 (European Restaurant) 20501200
(Restaurant) 20501000 (Gastronomy). Fig. 1 shows another example – the subtree to model roads.

Fig. 1: Part of the class tree

Note that the number of direct subclasses is not limited to 9, as we can also reserve more than one
digit for subtrees. Also note that the maximum height of the tree is limited by the maximum number of
digits in the number representation (currently 19 digits for long integers). However, current trees are
far from reaching this limit. Important benefits of this approach are:

 Equality of classes can be checked by number comparison.

 Subtrees can be represented by number intervals. All city roads: [34140000, 34149999], all roads
for motor vehicles: [34100000, 34199999] and all road: [34000000, 34999999].

 Once mapped to our numbers, we solved the obscure subclass problem.

 Numbers are more appropriate than strings regarding memory and communication.

 Numbers can benefit from efficient index mechanisms, e.g. in SQL tables.

Even though numbers in object records fully represent a class membership, developers can use sym-

bolic constants in their programs (e.g. COUNTRY_ROAD instead of 34130000). These constants are

automatically generated by the tool environment and improve readability. Note that constants
do not affect the efficiency as they are internally are represented as numbers. As another
benefit: software is more independent from changes of the class tree.

3.2 Mapping Rules

Mapping rules transfer a weak classification based on tags into our strong classes including properties.

Rules follow the pattern Conditions Assignments as shown in fig. 2.

Fig. 2: Mapping rules pattern (left), rule example (right)

The first condition is the Geometric Filter. Classes may only be applied to certain geometries. E.g.
lakes are areas (not lines), roads do not have point geometries and traffic signs are represented by sin-
gle points. OSM defines four geometry types: points, lines (open and closed) and multi-geometries
(called relations). The geometric filter can be any non-empty subset of these four types.

The Tag Condition is a boolean expressions keyvalue(s) where {==, !=, ^=, ~=} (see tab. 2).

They can be combined by logical && and || as used in programming languages. The right side can be

a single value v, a list of values {v1,…vn} or the wildcard *. Examples:

Bus stop: (bus==yes && public_transport=={stop_position;platform} ||
amenity==bus_station || highway==bus_stop) && bus^=yes &&

public_transport^={platform;stop_position}

Cycle track: (highway==cycleway || cycleway==* || highway==path &&
bicycle=={yes;designated} && foot==no) && foot~=yes

Besides the well-know conditions in programming languages == and !=, we request two more as

shown in tab. 2. These in particular address over-classification issues and create much more condensed
and readable expressions.

Tab. 2: Different comparisons in the tag condition

 Test on equal Test on unequal

Key must
exist

==
e.g. amenity==restaurant –
the class expects this combina-
tion

!=
e.g. amenity!=restaurant – the
key amenity must appear and must
be different to restaurant

wildcard ==* the key must appear !=* not allowed

Key does
not have

to exist
^=

e.g. amenity^=restaurant –
the key amenity does not have
to appear, but if, the value must
be restaurant

~=

e.g. amenity!=restaurant – the
key amenity does not have to appear,
but if, the value must not be restau-
rant

wildcard ^=*
is always true, used to consume
a tag, e.g. foot^=* marks any
foot tag as 'used' for this rule

~=*
key must not appear, e.g. foot~=*
means: no foot tag is allowed for
this class

A weak classification may fulfil more than one rule. The mapping system has then to clarify, whether
multiple hits are a result of polymorphic objects, over-classification or if the rule conditions uninten-
tionally overlap. Priority Rules can express in a fine granular manner for pairs of two hit classes:

 one class wins against another, i.e. of two hits one will removed from the result; or

 the two classes intentionally differ, i.e. both classes are furthermore considered as result classes
(usually for polymorphic objects).

The corresponding WIN or DIFFERS expressions can be applied to certain classes or entire subtrees

(indicated by +CLASS in fig. 2 right). Based on these three conditions, rules are processed as follows:

 Compute the set of classes for which the geo object fulfils the geometric filter and tag condition.

 Eliminate all classes of the set that are super classes of another class in the set. This is because in a
subtree the lowermost class is most meaningful.

 Eliminate all classes of the set that lose against another class because of priority rules.

Usually, only one class should remain unless we have a polymorphic object. If a rule remains in the
result set, the assignments are performed (fig. 2):

 Class Definition: the actual class number and symbolic constant (e.g. HIKING_TRAIL). The map-

ping mechanism automatically computes a free class number.

 Closed Line: as a special problem of OSM geometries, areas and linear rings have the same repre-

sentation. A contributor may clarify (using the tag area=yes) but is not forced to do it. This as-

signment tells: a closed line is meant as ring (e.g. loop roads) or as area (e.g. a lake, estate or
place).

 General Properties: this is a list of all keys that are meant as object properties. The values may be
restricted to e.g. boolean values, numbers, speeds in km/h, distances in meters, or weights in tons.
Currently we support 25 property types.

 Application Properties: further application-dependent properties are defined for map rendering
(e.g. icons), search tools (e.g. class terms and synonyms) and route planning (e.g. road properties).

After an object undergoes this procedure, an application can access the defined values for own com-
putations. A small software library (even available for smart phones) provides access to all results.

3.3 The Tool Environment

The tool environment has three goals: first, it analyses the weak classified data source, second, it
checks the mapping rule set and third, it analyses the strong classified target data. Checking the rule
set means to perform basic consistency tests that e.g. detect circular win rules or detect tag conditions
that never can be true. We focus on the other two goals.

A tool analyses real data and produces so-called co-occurrence trees. In a first step, key-value pairs of
all geo objects in the source are collected. Keys are then classified by occurred values. If, e.g., mainly
yes/no values appear for a certain key, it seems to be a boolean property tag. If a small list of constants
appears for a key, it usually is a main class or subclass key. If a huge number of different values ap-
pear, it usually is a text property (e.g. name or description).

For each class and subclass tag, a co-occurrence tree is displayed as shown in fig. 3. Co-occurrence
trees indicate common tag combinations for typical weak classifications at a single glance.

Fig. 3: The co-occurrence tree for the key 'parking'

The tree in fig. 3 inspects the key parking. It usually appears in combination with amen-

ity=parking (96%) and most often has the value surface (90%). This indicates parking to be the

subclass tag of amenity. Typical further tags are fee=yes/no, capacity=<integer> and

park_ride=yes/no. Besides surface, we find underground and multi-story with different

related tags. Based on these observations we could create a class subtree for 'parking':

 We assign a top level class PARKING, if only amenity=parking appears in the source.

 This class has three subclasses SURFACE_PARKING, UNDERGROUND_PARKING and MULTISTO-

REY_PARKING.

 All classes have the properties fee (boolean), access (list of constants) and capacity (int);

SURFACE_PARKING additionally park_ride (boolean); UNDERGROUND_PARKING and MULTI-

STOREY_PARKING additionally wheelchair (boolean) and building (boolean).

Note that we are free to model other trees. E.g., we could consider the 3% of tags amenity=park-

ing_space and model more classes. We also could merge underground and multi-storey parking

(each only 4% of tags) to a class NONSURFACE_PARKING.

As the OSM classification quickly evolves, the number of different classifications dramatically in-
creases. The co-occurrence tree is important to always capture the actual state of how guidelines are
considered by contributors. We could, e.g., easily discover, if new important subclasses or properties
were introduced.

Currently the rule set contains approx. 800 rules with some thousand subconditions. A second tool
evaluates the mapping results. Analyses provide insight on the effectiveness of the mapping, espe-
cially, if there is the need to extend the set of classes or to adapt the conditions. Tab. 3 summarizes the
analyses and activities to improve the rule set.

Tab. 3: Strong classification target analyses and activities

Analyses Objective Activity
Detect classes with
many or few instances

Some classes may not be appropriately
split into different subclasses.

Re-arrange the class tree.

Detect instances with
many assigned classes

Usually, polymorphic objects do not
have more than four assigned classes.
Too many hits may complicate further
processing.

Improve priority rules to re-
duce multiple class hits or cre-
ate new classes for polymor-
phic objects.

Statistics on unused
tags of objects

Unused tags of objects may be properties
or subclass tags; a contributor usually
wants all tags to be considered.

Improve tag conditions or
property lists.

Statistics on property
type conflicts

Properties are typed as boolean or inte-
ger, but some contributor may use other
values.

Adapt property types or ignore
malformed values.

Detect tag combina-
tions with no hit
classes at all

For some tag combinations no rule con-
dition may be true. Either conditions are
too restrictive, these objects are not rep-
resented as strong classes or contributors
created illegal tags.

Introduce new classes, relax
some of the conditions or ig-
nore these tags.

4. Discussion and Results

Our approach is a development of older classification approaches [5, 6] and solves some drawbacks
related to multiple classifications and rule inconsistencies. Once set up, the mapping mechanism
automatically processes several million of weak classifications during an import and produces only a
small report of critical cases. Of 26.5 million objects (Germany, Aug. 2013) 24.6 million are mapped
to at least one strong class. Of the non-mapped objects 1.7 million are not tagged at all in the source.
For only 248 thousand tagged objects (1%) our system failed to map, but many of these objects were
incompletely or inconsistently tagged by contributors. 317 thousand objects were identified as poly-
morphic. A majority of 9.2 million objects are general buildings, 6.9 million are different types of
roads. More detailed objects followed far behind, e.g. 393 thousand power poles, 319 thousand forests,
305 thousand single trees.

The strong classification forms the basis for the map renderer dorenda, the route-planning service
donavio and the search tool HomeRun Explorer [7, 8]. Our classification significantly simplifies the
development of these tools and services. Former implementations that directly based on the weak clas-
sification turned out to be too inflexible and complex. We especially want to shift the knowledge
about the rapidly changing geo data source away from applications to a single rule set.

Besides the mentioned tools, we used the strong classification in our annual course 'Location-based
services and applications' (Nuremberg Institute of Technology, CS department), where students have
to implement location-based applications in three-month projects. As a major benefit: the students

could quickly focus on application functions (e.g. solve the geometric or topologic problems) and did
not have to deal with the interpretation of classification tags.

Even though our class mapping robustly works, there still is a problem with values of property fields.
We can identify two problems. First, some property values formulate complex structures by strings.

For e.g. opening_hours, the contributor wants to express daily opening hours with breaks, different

opening hours for weekdays or exceptions for holidays. The results may be very complex such as

Mo, Tu, Th, Fr 06:00-13:00, 16:00-18:00; We 08:00-13:00;
Sa sunrise-sunset; Dec 25 off; week 2-20 10:00+

Applications usually not only display such strings, but want to process them (e.g. want to decide
whether a shop currently is open). As there is a huge variety of different properties and formats, our
platform should support an application to process such properties.

A second problem: for unstructured fields (e.g. names, descriptions), users tend to use different strings
to indicate the same value (e.g. variations of upper/lowercase, abbreviations, usage of '-' or blanks). An
application thus has difficulties to identify same values. However, this problem can often only prop-
erly be solved by the data source.

5. References

[1] Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland
(AdV): ATKIS Homepage, http://www.atkis.de/

[2] NÖV – Nachrichten aus dem öffentlichen Vermessungsdienst NRW, Vol. 2-3, 1987

[3] Tiger – Topologically Integrated Geographic Encoding and Referencing, US Census,
http://www.census.gov/geo/maps-data/data/tiger.html

[4] Open Street Map, MapFeatures, http://wiki.openstreetmap.org/wiki/Map_Features

[5] Roth, J.: Modelling Geo Data for Location-based Services, 3. GI/ITG KuVS Fachgespräch
"Ortsbezogene Anwendungen und Dienste", 7.-8. Sept. 2006, Berlin

[6] Roth J.: Übernahme von Geodatenbeständen aus Open Street Map und Bereitstellung einer
effizienten Zugriffsmöglichkeit für ortsbezogene Dienste, Praxis der Informationsverarbeitung
und Kommunikation (PIK), Vol. 13, No. 4, 2010, 268-277

[7] Roth J.: Modularisierte Routenplanung mit der donavio-Umgebung, in Werner M., Haustein M.
(Eds.): 9. GI/ITG KuVS Fachgespräch "Ortsbezogene Anwendungen und Dienste", Sept. 13-14
2012, TU Chemnitz, Universitätsverlag Chemnitz (Germany), 2013, 119-131

[8] Roth J.: Combining Symbolic and Spatial Exploratory Search – the Homerun Explorer, Innova-
tive Internet Computing Systems (I2CS), Hagen (Germany), June 19-21, 2013, in press

