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Abstract: In this paper we present an approach for reasoning about continuous 
context variables. We introduce a probabilistic mechanism based on efficient geo-
metric structures that avoid typical restrictions of existing approaches. Especially, 
we can model non-Gaussian distributions, negated statements and we can deal with 
external knowledge that is only accessible on demand. 

1. Introduction 

Many context variables are continuous quantities that can be described by a time-de-
pendent numerical value. Typical examples are a user's heart beat rate, current geo-
graphic coordinates or the outside temperature. If such variables are not mapped to dis-
crete symbolic values, reasoning cannot base on classical logic as introduced by artificial 
intelligence approaches. As such variables have to be measured with a certain measure-
ment error, probabilistic approaches are thus appropriate. 

Many probabilistic approaches have certain demands on the measurement error distribu-
tion. Usually they assume that all distributions are Gaussian and relations between two 
states can easily be expressed (e.g. by matrices). However, these assumptions often are 
not true in common context scenarios. 

2. Related Work 

Probabilistic approaches usually are based on the following consideration: given a cer-
tain state vector – what is the probability to get the specific list of measurements 
[DFG01]? In the case of continuous random variables, the probability of any single dis-
crete event is in fact 0. Thus, the probabilities of all possible context states are repre-
sented by a probability density function. According to Bayes' rule, multiple measure-
ments at a single point in time are processed using the multiplication of the correspond-
ing densities. If a measurement relates two points in time, we use the convolution of 
densities. With multiplication and convolution, we can model most required probabilistic 
computations. Two existing approaches perform reasoning about context variables based 
on this consideration: Kalman filters and Particle filters. 
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The Kalman filter assumes a context state vector with arbitrary dimensions [DMC00, 
Kal60]. The state is unknown, but Gaussian distributed measurements indirectly reflect 
information about the state. Further, relations between two states (at two points in time) 
can easily be described by a matrix. A result of a reasoning step is expressed by a mean 
(the most probably state) and an error covariance matrix. The Kalman filter computa-
tions can be simplified to few matrix multiplications and one matrix inversion that even 
run on small computers or embedded systems. 

Particle filters [HB04] use a set of particles; each presents a specific potential state. A 
particle contains a state vector and a weight, which reflects the probability density for 
this state, approximated by a Dirac delta density. Particle filters support a huge variety of 
densities. Increasing numbers of particles improve the precision, but also increase the 
required memory and processing time. 

Both approaches have their drawbacks. They have certain demands on the measurement 
error distribution. Moreover, they cannot model negated knowledge about the state and 
assume the ultimate knowledge about the context to be available locally. These assump-
tions are often not true in context aware scenarios. 

3. The Reasoning Approach 

Our approach is based on the following assumptions: first, a single reasoning step proc-
esses up to two continuous context variables; each of it is time-dependent. A complete 
reasoning process may have multiple reasoning steps. Second, each variable is unre-
stricted, i.e. we cannot generally assume maximum or minimum values. As a conse-
quence, we cannot easily use grids. Third, the context variables can effectively be meas-
ured. This means, we cannot deal with variables such as "the level of happiness" or "the 
current level of distraction" that only can be indirectly measured or even only estimated. 

Typical examples for our intended context variables: 
– Blood pressure and heart beat rate of a certain person are related quantities that allow 

reasoning about the current cardiovascular state. We can formulate certain relations 
between these quantities as well as relations between these quantities and the current 
time. We can effectively measure these context variables. 

– The latitude and longitude values of the user's current geographic position are one of 
the most important context variables. We are able to collect several pieces of knowl-
edge about the position. E.g., we may know that a certain position has to be on a road 
or we expect a position to reside inside a certain mobile phone cell. We can use rea-
soning to derive the most probable position based on many pieces of position knowl-
edge. 

– Quantities such as the outside temperature, humidity, noise level etc. are further con-
text variables of our intended type. 

Knowledge about a context state can either base on measurements or be a-priori knowl-
edge. In addition, knowledge can describe single points in time or the relation between 
two points in time. We get four different types as presented in table 1. 
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Table 1: Types of knowledge about a context with examples 

 measurements a-priori knowledge 
single point in 
time 

current blood pressure; 
current GPS position 

cars drive on roads; 
blood pressure is always lower 
than 250 mmHg 

relations between 
two points in 
time 

odometers that measure the 
driving distance 

pedestrians have a maximum speed 
of 5km/h; the temperature does not 
drop more than 10oC per hour 

Note that the type measurements/two points in time currently is not considered in our 
approach, as context alteration between two points in time usually are not explicitly 
measured but are mapped to two single-point measurements. 

Based on these pieces of knowledge we derive four types of predicates: 
– Absolute predicates are e.g., "the position is x/y" or "the blood pressure is x mmHg". 
– Negative predicates are e.g., "the position is not at home". Negative predicates are 

derived from former positive predicates. E.g. if a predicate once is true and a further 
measurement does not indicate this predicate any longer, the negation automatically is 
assumed. 

– External predicates are absolute predicates that have to be externally downloaded from 
other databases at processing-time. E.g., the user drives on a street, but the map of the 
current position first has to be loaded from a huge street database. External predicates 
are looked up with the help of former results. E.g., only those road information is 
looked up, that cover an area with a probability greater than 0. As a benefit, not the 
world-wide roadmap has to be loaded, but only the roads in small areas. 

– Relative predicates relate two points in time and are directly derived from a-priori 
knowledge (table 1, lower right). 

Fig. 1 shows the connections between pieces of context knowledge and the respective 
predicates. 

 
Fig. 1: Data flow for the reasoning process 
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In addition to the two density operations multiplication and convolution, we introduced a 
third one: multiplication negated (see below). These three operations have to be effec-
tively implemented. In our approach we represent densities with the help of multipoly-
gons with holes (mph) that are common approximating geometric two-dimensional 
structures. An mph contains a list of polygons; each represents a coherent part of the 
surface. Each of it may contain polygons that represent the holes in the surface. We rep-
resent a density f with the help of mphs as follows 
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In this equation p describes a two-dimensional state vector (considered as a geometric 
point in a two-dimensional area), n denotes the number of areas that approximate the 
density, wi denotes a constant weight of an area, mphi denotes the geometric description 
of an area and Λ  the characteristic function of an mph, i.e.  1),( =Λ mphp if mphp∈ , 0 
otherwise. The variables n and wi are defined by the respective application and have to 
balance between the precision of the approximation and required computational time. 
To be a density, f̂  has to cover a volume of one. We further require ∅=∩ ji mphmph  
for every ji ≠ . We get an ordered list of areas by their weights. This requirement leads 
to an efficient implementation especially of the density multiplication and to an efficient 
resampling operation. Fig. 2 illustrates the density representation. 

 
Fig. 2: Density approximation (left) and parts of the approximation (right) 

With the help of this density representation we now can implement the required density 
operations. Here, we only provide the ideas of the most important operations: 

Multiplication: For two approximated densities we use the equation 
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where ĉ  is a normalization factor. Only those mph1i, mph2j that overlap can contribute to 
the result, thus an efficient algorithm first tests this, before the actual intersection is com-
puted. As the overlapping test knows efficient implementations (e.g. using bounding 
boxes), this approach is reasonable. 
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Multiplication negated: we only consider the negation of predicates that have a unique 
density inside a finite area and a zero density outside (a usual case). Let f1 be a density 
and f2 a density that should be negated. Then 
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Here, c is the normalizing factor. Note that 2f is not a density, as it does not produce an 
integral of one. Thus, we explicitly mark a density as negated and store the original non-
negated density. 

Convolution: We currently only convolve an arbitrary density with a circular density c, 
with a unique density inside the circle with radius r and 0 outside (which, e.g., describes 
a maximum movement per time). The convolution then simplifies to 
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This means, we have to compute the inner integral and simply create a sum. The inner 
integral can be numerically approximated using the geometric buffer function [OGC06]. 
Table 2 shows all required density operations and the corresponding geometric mph 
operations used for the realization. 

Table 2: Mapping of density operations to geometric operations 

 mph ops 

density ops 
point in 

area 
∪ ∩ \ surface 

area
buffer cen-

troid 
dist. 

prob. of pos. ×        
resample density  ×   ×    

multiplication   ×      
convolution  × × × × × ×  

multiplic. negated   × ×     
centroid of density     ×  ×  
maxima of density  ×     × × 
area with prob.>0  ×       

A simulation illustrates our approach. The two-dimensional context state variables are 
latitude and longitude of the user's current geographic position (fig. 3). A walker prome-
nades at a lakeside. Every minute, his mobile device tries to receive GSM and WLAN 
cell information. We assume the device can receive two GSM cells and one WLAN 
hotspot. In addition, we know that the user cannot reside inside the lake (e.g. does not 
row a boat). The knowledge about the position undergoes our reasoning process. In 
summary, the process executed 2 convolutions, 3 multiplications and 5 multiplications 
negated. Fig. 3 (bottom) shows the result. After 3 minutes a density represents the 
knowledge about the current position. We now can easily compute the most probable 
position (marked by an arrow). 
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Fig. 3: A simulated scenario (top) and simulation results (bottom) 

4. Summary 

Our approach allows to effectively reason about continuous context variables with the 
help of a probabilistic mechanism. It heavily makes use of geometric operations widely 
available and efficiently implemented in many tool environments, software libraries and 
spatial databases. In particular, all required density operations (especially multiplication, 
multiplication negated and convolution) can be mapped to geometric operations. 
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