
Jörg Roth
Department of Computer Science

Univ. of Applied Sciences Nuremberg
Kesslerplatz 12, 90489 Nuremberg, Germany

Managing Geo Data –
Usage of Open Street Map for Own

Services and Applications

2 Jörg Roth

Why geo data?

Applications that consider
the user's current location:
 Tour guides
 Route planning (car, tourist)
 Where is…?
 Community services,

social networks
Not only end-consumers:
 Market research
 Logistics
 Traffic planning

3 Jörg Roth

Service platforms

Service platforms, e.g. Google Maps:
 Map display
 Routing
 Address resolution
 Friend finders
 Mobile support

4 Jörg Roth

Service platforms

Why not simply using such a service platform?
 Only services that are available can be used – no

modifications possible
 Services can be withdrawn
 Costs, licenses
 Service availability (access via

mobile networks often a problem)
 No control over geo data

• Quality or coverage of geo data
• Not possible to change or add own data

Sometimes, we do not want to rely on other services

5 Jörg Roth

Typical functions

What to do with geo data?
 Paint maps
 Routing

• shortest, fastest
• car, pedestrian
• also useful: train, bus

(problem: timetables)
 Geocoding, reverse geocoding

• geocoding: geo object coordinate
• reverse geocoding: coordinate geo object

(or postal address)

6 Jörg Roth

Typical functions

 Radius search, nearby search,
city search:
• Where is the nearest

fuel station?
• Where are hotels with a distance not exceeding

5 km?
• Give me all parks in Lisbon.

 Spatial join:
• Give me all open air baths in Bavaria that are close

to a train station (nearer than 1km).
• How many cities in Europe have rivers running

through them?

7 Jörg Roth

Geo data basics

Three major properties of geo data:
 Geometry: what is the shape and location of the

object?
 Topology: how is an object related to other

objects? (most important: street routing network)
 Thematic properties:

• Object type, e.g. street, forest, lake, church, bus
stop, bistro, tree, artwork…

• Names
(in different languages, for different purposes)

• Further properties: opening hours, max. speed,
tree species, restaurant type

8 Jörg Roth

Geo data basics

We now focus on vector data
 Object geometries are

points, line strings or
polygons
 Also possible: Bezier curves

or splines
(usually not supported)
 Typically 2D (only plane) or 2.5D (height is an

attribute), not full 3D

9 Jörg Roth

Open Street Map

Open Street Map:
 A community project to collect,

process and distribute world-wide
geo data
 First ideas in 2004
 2006: Open Street Map Foundation, operable

infrastructure
 2011: 1.2 billion points, 116 million ways,

1.1 million relations

10 Jörg Roth

Open Street Map

Sources:
 Privately collected GPS tracks, entered,

processed and classified by participating users
 Open geo databases, e.g. the TIGER databases
 Aerial images used to manually georeference

objects
 Users can enter objects without any GPS

measurement only in relation to existing objects

11 Jörg Roth

Open Street Map

Ways to add data to Open Street Map:
 Online editors
 Stand alone editors
 Registration required

Online discussion (Wiki):
 Most important issues:

How to classify objects?
(see later)
 Also: workflow, process

models

12 Jörg Roth

Open Street Map

Available data:
 Most important: vector data in 2D
 Map bitmaps (many renderers, also 3rd party) –

not the original domain of OSM
 Not or only partly supported:

• Height profiles: only experimental
• Street topologies: can be

derived from geometries
• Is-in relationship: only if users enter tags
• Postal addresses: only if users enter tags

13 Jörg Roth

Open Street Map

Ways to access vector data from Open Street Map:
 Online via HTTP – only small amounts of data
 Planet files:

• Export of the entire
OSM database as XML

• Also parts in different
granularities available:
continents, countries,
states, districts

14 Jörg Roth

OSM files

OSM files:
 bzip2 compressed

(zip not possible due to size limitations)
 unpacked: XML
 Main structure <osm>…</osm>
 Inside: three types of entries (in this order)

• Nodes: <node>…</node>:
Point objects and line points

• Ways: <way>…</way>:
Objects with line string or area geometries

• Relations: <relation>…</relation>:
Objects that are built up by other objects

15 Jörg Roth

OSM files

Example: Germany.osm (May 2012)

234,273relations

14,996,507ways

100,475,499nodes

318,532,216XML tags total

22 GBXML file size

2 GBbzip2 file size

16 Jörg Roth

OSM XML file (nodes)

<?xml version='1.0' encoding='UTF-8'?>
<osm version="0.6" generator="pbf2osm">
<node id="1" lat="51.2492152" lon="9.4317166" version="6"

user="elllit" uid="24852"
timestamp="2011-08-16T11:26:47Z"/>

<node id="10" lat="51.3806531" lon="9.3599172"
version="5" user="max60watt" uid="134914"
timestamp="2011-04-26T20:50:36Z"/>

<node id="12" lat="51.3400316" lon="9.4819956"
version="2" user="max60watt" uid="134914"
timestamp="2011-04-28T21:39:02Z"/>

<node id="13" lat="51.3731042" lon="9.5130058"
version="2" user="max60watt" uid="134914"
timestamp="2011-05-08T22:06:06Z">
<tag k="highway" v="bus_stop" />
<tag k="name" v="Bleichplatz" />
<tag k="shelter" v="yes" />

</node>
...

17 Jörg Roth

OSM XML file (ways)

<way id="3591699" version="2" user="Bube"
timestamp="2009-06-13T07:45:37Z">
<nd ref="17410365"/>
<nd ref="17410355"/>
<tag k="created_by" v="JOSM" />
<tag k="highway" v="track" />
<tag k="tracktype" v="grade2" />

</way>
<way id="3593390" version="8" user="kanu_guenni"

timestamp="2010-03-31T18:19:41Z">
<nd ref="14539664"/>
<nd ref="14556238"/>
...
<nd ref="14539666"/>
<tag k="bicycle" v="official" />
<tag k="foot" v="official" />
<tag k="highway" v="path" />

</way>
...

18 Jörg Roth

OSM XML file (relations)

<relation id="330" version="6" uid="161619" user="FvGordon"
timestamp="2012-02-24T23:13:40Z">
<member type="way" ref="49022711" role="inner"/>
<member type="way" ref="24808645" role="outer"/>
<tag k="area" v="yes" />
<tag k="highway" v="pedestrian" />
<tag k="name" v="Martin-Luther-Platz" />
<tag k="type" v="multipolygon" />

</relation>
<relation id="2235" version="6" uid="39381" user="DD1GJ"

timestamp="2009-11-22T08:15:27Z">
<member type="way" ref="4917826" role=""/>
...
<member type="way" ref="7942741" role=""/>
<tag k="name" v="Lichtentaler Allee" />
<tag k="route" v="road" />
<tag k="type" v="route" />

</relation>
...
</osm>

19 Jörg Roth

OSM nodes

Nodes:
 Major property: latitude/longitude, no extent
 Two types (only implicitly defined):

• Point-like objects (often called Point of Interests):
Objects as such, e.g. shop, restaurant, traffic light,
postbox, waste container

• Part of a line string (i.e. only a coordinate)
 Point of Interests must have further properties to

be useful
• at least the

object type

<node id="13" lat="51.3731042" lon="9.5130058"
version="2" user="max60watt" uid="134914"
timestamp="2011-05-08T22:06:06Z">

<tag k="highway" v="bus_stop" />
<tag k="name" v="Bleichplatz" />
<tag k="shelter" v="yes" />

</node>

20 Jörg Roth

Tagging objects

Tags k, v:
 k="…" and v="…" are used to express non-

geometric properties, e.g.

 Details of tagging see later
 For now: we write

abc="xyz"
instead of

<tag k="abc" v="xyz" />

<tag k="highway" v="bus_stop" />
<tag k="name" v="Bleichplatz" />
<tag k="shelter" v="yes"

21 Jörg Roth

OSM ways

Ways:
 A sequence of nodes,

referred by their ID
 Usually complete geo objects, i.e. with properties
 Three possible geometries:

• (open) line string
• closed line string
• polygon

<way id="3591699" version="2" user="Bube"
timestamp="2009-06-13T07:45:37Z">

<nd ref="17410365"/>
<nd ref="17410355"/>
<tag k="created_by" v="JOSM" />
<tag k="highway" v="track" />
<tag k="tracktype" v="grade2" />

</way>

22 Jörg Roth

OSM ways

 Open line string: geo objects such as streets
 Closed line string: the actual object is the line

string, not the content, example: roundabout
 Polygon: the actual object is the content area, not

the border line. Examples: park, forest, lake

23 Jörg Roth

OSM ways

How to distinguish these geometries:
 Open line string: first and last node are not equal
 Closed line string vs. polygon (area):

• no simple rule
• sometimes distinguishable by their type

-highway usually is closed line string
-building usually is polygon

• sometimes optional tag area="yes"

24 Jörg Roth

Further geometries

 OSM nodes and ways cannot express these
geometries:

25 Jörg Roth

OSM relations

Relations:
 Increase the ability

to express complex
objects and complex geometries
 Types of relations:

<relation id="330" version="6" uid="161619"
user="FvGordon" timestamp="2012-02-24T23:13:40Z">

<member type="way" ref="49022711" role="inner"/>
<member type="way" ref="24808645" role="outer"/>
<tag k="area" v="yes" />
<tag k="highway" v="pedestrian" />
<tag k="name" v="Martin-Luther-Platz" />
<tag k="type" v="multipolygon" />

</relation>

Relationship between
objects

Objects with piecewise
defined properties

Combine objects to
'bigger' objects

Objects that share parts
to avoid redundancy

Complex geometries

e.g. a turn restriction between roads at a certain
crossing

e.g. a highway with different speed limits (note: a
way entry can only have a single set of properties)

e.g. 'Hiking trail Frankonia to Baltic Sea' that
contains smaller hiking trails

e.g. shared borders of two cities

e.g. polygons with holes, multiple polygons

26 Jörg Roth

OSM relations – complex geometries

Multipolygon and polygons with holes:
 Relations with tag type="multipolygon"
 Each member must be a closed linestring
 Each member should have role="outer"

(a shell) or role="inner" (a hole)
 Unfortunately: no expression

which hole belongs to which
shell

type="Multipolygon"

inner

inner

outer
outer

27 Jörg Roth

OSM relations – complex geometries

Borders:
 Borders (e.g. city borders) are

often a collection of lines, each
of it representing a part of the
border
 Reason: shared borders

should only be stored once
 The problem: neither ordering

nor orientation are specified in
the member description
 Difficult to create a city area

from borders

Shared Border

City1

City2

28 Jörg Roth

IDs

OSM object IDs:
 nodes, ways and relations have unique IDs
 They do not change over time, i.e. can be used to

identify objects between imports
 Note: they are only unique inside a type

(nodes, ways, relations)
• node with ID 1 and way with ID 1 possible
• to have unique object IDs for all types you have to

artificially distinguish types, e.g.
ownID = ID3 + 0 for nodes
ownID = ID3 + 1 for ways
ownID = ID3 + 2 for relations

29 Jörg Roth

Tagging objects

Tagging:
 Users can assign arbitrary pairs of key/value to

objects
• no limits for number of pairs
• no obligatory keys, to superset of keys
• all values allowed that can be expressed as string

 Only recommendations:
• you may ask the editor for useful keys
• no technical check, if entries are useful

 Currently, one problem for automatic
classification

30 Jörg Roth

Tagging objects

However, there is some structure:
 usually there is a most important key/value
 unfortunately, not syntactically indicated

31 Jörg Roth

OSM object classification

There are keys that define main classes
 Traffic

DescriptionSubclass exampleMain Class

junction="roundabout"

aeroway="terminal"

waterway="river"

cycleway="lane"

railway="station"

highway="motorway"

Junctionsjunction="…"

Flyingaeroway="…"

Waterwaterway="…"

Cyclingcycleway="…"

Train stuffrailway="…"

Streets, roads, pathshighway="…"

32 Jörg Roth

OSM object classification

 Buildings, amenities, shops etc.

Craftcraft="plumber"craft="…"

DescriptionSubclass exampleMain Class

military="bunker"

power="generator"

man_made="water_tower"

barrier="bollard"

office="lawyer"

shop="hairdresser"

amenity="restaurant"

Special buildingsman_made="…"

Electricitypower="…"

Militarymilitary="…"

Barriers, wallsbarrier="…"

Officesoffice="…"

Shopsshop="…"

Amenitiesamenity="…"

33 Jörg Roth

OSM object classification

 Countryside, nature

 Non-physical objects

DescriptionSubclass exampleMain Class

geological="valley"

landuse="farm"

natural="rock"

Agriculture, farmslanduse="…"

Geological formationsgeological="…"

Anything naturalnatural="…"

DescriptionSubclass exampleMain Class

place="county"

boundary="postal_code"

route="bus"

Captions, labelsplace="…"

Boundaries, e.g. cityboundary="…"

Sequence of waysroute="…"

34 Jörg Roth

OSM object classification

 Leisure, tourism

 (list is not complete)

DescriptionSubclass exampleMain Class

historic="monument"

tourism="hostel"

leisure="park"

sport="golf"

Historic objectshistoric="…"

Related to tourismtourism="…"

Places for leisureleisure="…"

Places for sportsport="…"

35 Jörg Roth

Further classifications

 For some classes, further classes are
recommended, e.g. for

amenity="restaurant"
a further tag

cuisine="…" (e.g. cuisine="bistro")
is expected
 The problem:

• it is not clear, whether a tag is meant as classi-
fication (such as 'cuisine') or as property (such as
'opening hours')

• rule-based analyses required to map classes to
objects

36 Jörg Roth

Ambiguity

Ambiguity:
 Three ways to express 'bistro'

• shop="bistro"
• amenity="bistro"
• amenity="restaurant",cuisine="bistro"

 Two ways to express combined foot/cycleway
• highway="cycleway", footway="yes"
• highway="footway", cycleway="yes"

 To quickly distinguish object types (e.g. for
routing), a simpler classification scheme is
required in own databases

37 Jörg Roth

Naming objects

Tags to name objects:

Official name

Common abbreviation

*{int, nat, loc, reg}
international, national,
local or regional name

Name in different
languages

Standard name

Meaning

UKshort_name="…"

Principality of
Andorra

official_
name="…"

Bayern*_name="…"

Deutschlandname:de="…"

Germanyname="…"

ExampleTag

38 Jörg Roth

Naming objects

Further tags for naming:

House name as part of
address information

*{int, nat, loc, reg}
international, national,
local or regional name

Name of motorways,
bus lines etc.

Meaning

Hotel 4 Seasonsaddr:
housename="…"

A1 (without blank),
A 1 (with blank)

*_ref="…"

A1, Route 66, 23ref="…"

ExampleTag

39 Jörg Roth

Addresses

Defining postal addresses:

90489Postcodeaddr:
postcode="…"

KesslerplatzStreetaddr:
street="…"

12House numberaddr:
housenumber="…"

House name

Local city name

Country code as used in
Internet names

Meaning

Gebäude Aaddr:
housename="…"

Nürnbergaddr:
city="…"

DEaddr:
country="…"

ExampleTag

40 Jörg Roth

is_in relationship

Where is an object located semantically?
 In which city, state, country resides an object?
 Can in principle derived by

• border geometries: area required, geometric check
is time consuming

• postal addresses: not every relationship is encoded
in the postal address (e.g. suburbs, districts in
town, villages)

 Object can have explicit is_in tags, e.g.
is_in="Nuremberg"
• controversially discussed
• not consistently used

41 Jörg Roth

Street topologies and route planning

Street topologies:
 Not actually supported by OSM
 The street network can be derived from street

geometries:
• if streets are connected, they must have a shared

node
• if crossing streets that are not connected (bridges,

tunnels), they must not have a shared node

42 Jörg Roth

Street topologies and route planning

Tags that affect route planning:

In addition:
 Information about traffic signs, traffic lights
 Relations can identify turn restrictions

residential, secondary,
motorway

Street typehighway="…"

Speed limit

Driving only possible
in the given direction

Meaning

50, 60 mphmaxspeed="…"

oneway="yes"

ExampleTag

43 Jörg Roth

Public transportation

Public Transportation:
 Stops and stations are

stored
 Connections are also

available
• typically as relations

of streets or tracks
 The problem:

no timetables available

44 Jörg Roth

Example tool chain – HomeRun

The HomeRun environment:
 Import, management, access of

large amounts of geo data
 Also: foundation for spatial services, support for

mobile platforms
• dorenda map renderer and viewer
• donavio navigation environment

45 Jörg Roth

HomeRun object classification

 Objects are classified by a 5 digit number
 Implicitly: a tree

46 Jörg Roth

HomeRun OSM import

The HomeRun import chain:
 Parse XML
 Replace all references to nodes

and ways by their geometry
• Following references during a query is too time

consuming
 Classify objects (rule-based):

• Define the classification number
• Decide geometry (esp. closed line string vs. area)
• Find out the appropriate (best) name
• Distinguish tags

(names, address, is-in, links, organizational)

47 Jörg Roth

HomeRun OSM import

 Resolve relations:
• Build multipolys with holes
• Build areas from line string borders

 Prepare route planning:
• Compute the street topology from geometries
• Retrieve routing relevant properties

(oneway, maxspeed, avgspeed)
 Compute is-in relationship:

• Detect import larger objects (city, state etc.)
• Geometrically check if 'inside'

48 Jörg Roth

HomeRun geo database

How HomeRun stores geo data:
 Postgres database without spatial extension

• geometries stored as Well-known-binary (WKB) in
BLOBs

• own spatial index (Extended Split Index)
 Also conceivable: SQL databases with spatial

extension (e.g. PostGIS)
 HomeRun supports mobile devices

• spatial extension to SQLite
• spatially indexed virtual memory arrays (called

spatial hashtables)

49 Jörg Roth

Rendered maps with dorenda

50 Jörg Roth

10 golden rules to start

How to start?
1. Enter	some	data	into	OSM	– this	is	useful	to	get	an	

idea	of	the	process	and	structure.

2. Browse	through	the	OSM	Wiki	to	learn	about	object	
classifications.

3. For	the	first	step,	concentrate	on	a	specific	task,	e.g.	
map	painting,	route	planning.

4. Create	an	OSM	XML	parser	(a	simple	one	is	
sufficient).	Be	sure,	the	parser	does	not	read	the	
entire	file	before	analyzing	it.

51 Jörg Roth

10 golden rules to start

5. Replace	references	to	nodes	by	their	coordinate	–
following	references	at	runtime	is	too	time	
consuming.	

6. From	the	beginning,	use	a	database	(a	non‐spatial	
often	is	sufficient)	– using	files	will	only	work	for	
small	regions.

7. From	the	beginning	use	a	geometry	library.	Don't	
reinvent	the	wheel	– geometric	computation	is	
challenging.

52 Jörg Roth

10 golden rules to start

8. Use	an	own	classification	schema	(e.g.	based	on	a	
number)	– the	OSM	way	to	classify	objects	is	too	
complex	at	runtime.

9. Think	about	rule‐based	classification	and	name	
finding	(simple	rule	execution	will	be	sufficient).

10.In	early	stages	– forget	relations.	They	are	very	
complex	to	analyze,	often	inconsistently	stored	and	
often	not	useful.

Good luck

53 Jörg Roth

Jörg Roth

Univ. of Applied Sciences Nuremberg
Joerg.Roth@Ohm-hochschule.de

http://www.wireless-earth.org

