SIGN - Adapting Navigation Instructions to Individual Users

Stefan Pfennigschmidt
Ulrich Meissen
Agnès Voisard

Fraunhofer Institute for Software and Systems Engineering

September 2006
Outline

introduction
• personalized mobile services

SIGN
• motivation
• basic idea

terminology
• from navigation systems
• from situation-based systems
• interconnection

back to SIGN
• architecture
• general procedure

conclusions
Personalization of Mobile Services

technological aspects

- small displays
- limited interaction capabilities
- bandwidth
- communication cost

usage aspects

- mobile usage (ad hoc, short, as support)

→ „intelligent“ services
Example: Navigation Systems

Navigation systems support two modes:

- In 500 meters turn right!
- In 750 meters turn right!
- In 200 meters turn right!
- In 100 meters turn right!
- Now turn right!
Example: Navigation Systems

Navigation systems support two modes:

- **off**
SIGN - Basic Idea

SIGN module
situation-dependent guidance and navigation

suiting navigation to local knowledge
backlight on, notification sound, „left into Schillerstraße“
SIGN - Notions

familiarity
describes routes a user knows (local knowledge)
as an absolute concept

habits
describes routes a user usually takes
as a relative concept

expectations
describes route features a user expects (due to
familiarity and habits)

side conditions
limits familiarity, influence habits, e.g.,
• weather,
• daylight,
• season,

→ modeling of a user‘s history and
comparison required
Terminology
Terminology from Navigation Systems

link

a basic road element

e.g., “Wilhelmstraße” from “Behrenstraße” to “Unter den Linden”

![Link Diagram]

e.g., NAVTEQ: (53500573,0)

segment

an ordered set of successive links

![Segment Diagram]

route

triple (startpoint, endpoint, ordered set of succ. links)

![Route Diagram]
situation

A situation is a set of characteristic features – or characteristics – valid during a time interval.

symbolically

\[(t_b, t_e, C)\]

characteristic features:

\[a \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4\]

\[a = A(a_1) \quad b = B(b_1) \quad c = C(c_1)\]
Situation terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>situation</td>
<td>invariant feature holding during a time interval</td>
</tr>
<tr>
<td>feature</td>
<td>logical proposition defined over a dimension: e.g., location(office)</td>
</tr>
<tr>
<td>dimension</td>
<td>predicate defined over a concept hierarchy (DAG)</td>
</tr>
<tr>
<td>pattern</td>
<td>conjunction of features</td>
</tr>
</tbody>
</table>

Based on predicate logics
Situation terminology (cont’d)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>situation sequence</td>
<td>ordered set of non-overlapping situations</td>
</tr>
<tr>
<td>transition</td>
<td>difference in the patterns of two neighboring situations</td>
</tr>
<tr>
<td>event</td>
<td>change in the situation of a user (time, transition)</td>
</tr>
<tr>
<td>sequences</td>
<td>pattern sequence</td>
</tr>
<tr>
<td></td>
<td>transition sequence</td>
</tr>
<tr>
<td></td>
<td>event sequence</td>
</tr>
</tbody>
</table>
Routes and Situations

e.g., intermodal routes including different transportation
 • public as well as individual transportation

pattern sequence

situation sequence
Routes and Situations (cont’d)

routes as situation sequences

situation-dependent preferences

integration with weather, daylight conditions

inferring familiarity and habits
System Architecture
SIGN - Architecture
Back to the Example
knowledge-dependent navigation instructions depend on familiarity and habits

route representation

as pattern sequences

- Platz der Vereinten Nationen
- Mollstraße
- Karl-Liebknecht-Straße
- Alexanderplatz
- Karl-Liebknecht-Straße
- ...

integrating additional features, e.g.,

- daylight conditions,
- guided (yes/no),
- season

advantage

“string” manipulation functions applicable
SIGN - Basic Algorithm

new route

basic procedure

(1) Identify familiar routes.

(2) Compute familiar segments of the new route.

(3) Compute the optimal segment combination.

(4) Derive Instructions.

to work !left to TU !straight !left
Conclusion
Conclusion

personlization
- uses the notions of
 - familiarity,
 - habits, and
 - expectations

SIGN approach
- based on describing and comparing situation sequences

application of SIGN
- in individual motorized transportation
- also applicable in public transportation (?)

some further research issues
- familiarity extraction
- familiarity dependent routing
Thank you very much!