Modeling Context Constraints

Rüdiger Gartmann
Fraunhofer Institute for
Software and Systems Engineering ISST
Dortmund

Berlin, September 7th, 2006
Outline

Introduction
Context Model
Transformation of Context Dimensions
Service Scope Model
Service Scope Representation
Example
Conclusion
Need for Defining Context Constraints: Service Roaming

Services often have limited scope

Users (especially mobile users) change their contexts frequently

Services are valid for a certain user if user context is within service scope

Whenever the context leaves the scope service roaming is needed
Context

Defined by values of n context dimensions

Represented by an n-tuple

In this example: 3 dimensions

C=(latitude, longitude, time)

Certain value for each context dimension

Single point in context hyperspace

Current context values of an entity (a user)
Context Hyperspace

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cartesian n-dimensional space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions defined for</td>
<td>([-\infty; \infty])</td>
</tr>
<tr>
<td>Dimensions defined on</td>
<td>(\mathbb{R})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Context attributes</th>
<th>Often limited range (e.g. longitude ([-180;180]))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not always defined on (\mathbb{R}) (e.g. room numbers)</td>
</tr>
<tr>
<td></td>
<td>Not always numbered (e.g. weather: cloudy)</td>
</tr>
<tr>
<td></td>
<td>Not always distinct (e.g. language capabilities: DE, EN)</td>
</tr>
</tbody>
</table>
Scales of Measurement, Scale of Representation

Scales of measurement
- **Nominal**
 Equal or unequal (e.g. male, female)
- **Ordinal**
 Nominal + order of values (e.g. room numbers)
- **Interval**
 Ordinal + definite difference (e.g. temperature)
- **Proportional / rational**
 Interval + natural zero point (e.g. length)

Scale of representation
- Always proportional scale (because defined on \(\mathbb{R} \))
Transformation

Context attributes
For each context attribute c_i there has to be a transformation into the representation attribute d_i

$$\forall c_i : \exists f(c_i) \rightarrow d_i ; d_i \in R$$

This transformation is injective
(For each input value there is a distinct output value)

Context semantics
Context may consist of more than name/value pairs

Semantics are separated from values (semantic layer)

Semantic layer
Contains scale of origin, relationships between context dimensions, ... (Not necessary for service roaming!)
Context Representation

<table>
<thead>
<tr>
<th>Operations</th>
<th>Proportional scale allows many operations (Order, difference, ratio, ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only check for equality is needed for service roaming => Only this is allowed on the context representation per default</td>
</tr>
<tr>
<td></td>
<td>All other operations are supported only if allowed by the semantic layer</td>
</tr>
<tr>
<td>Integrity</td>
<td>$\text{op}(f(c_i)) = f(\text{op}(c_i))$</td>
</tr>
<tr>
<td>Reverse transformation</td>
<td>Leads to initial context value</td>
</tr>
</tbody>
</table>
Service Scope Representation

Service scope: n-dimensional polytope
(Assumption of linearity for simplification)

Two (popular) ways of representation:

- Boundary representation
 Each n-dimensional object is recursively described by its (n-1)-dimensional boundaries

- Constraint representation
 Systems of linear inequations, each of them defining a half-hyperspace
Comparison of Representations

<table>
<thead>
<tr>
<th>Representation</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary</td>
<td>Very popular in Solid Modeling</td>
</tr>
<tr>
<td></td>
<td>Used in GIS for representation of 2D/3D objects</td>
</tr>
<tr>
<td></td>
<td>Very verbose for n-dimensional objects (for large n’s)</td>
</tr>
<tr>
<td></td>
<td>$b_n \geq \prod_{i=1}^{n} i + 1$ (b$_n$: number of bounding objects)</td>
</tr>
<tr>
<td>Constraint</td>
<td>Only capable to describe convex objects</td>
</tr>
<tr>
<td></td>
<td>Less computation for ‘INCLUDES‘ operator</td>
</tr>
<tr>
<td></td>
<td>Easier to convert boundary representation to constraint representation than other way round</td>
</tr>
</tbody>
</table>
Decision: Constraint Representation

<table>
<thead>
<tr>
<th>Reasons</th>
<th>Verbosity of boundary representation is major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Many restrictions are already initially in constraint representation (e.g. time $\geq 8:00$)</td>
</tr>
<tr>
<td></td>
<td>Only few restrictions are initially in boundary representation (e.g. spatial restrictions by polygons)</td>
</tr>
</tbody>
</table>

| Non-convex scopes | Each non-convex polytope can be decomposed into a set of convex polytopes. |
Example

Constraints:

Time: between 8:00 and 21:00

Space: Within the following polygon
Spatial Dimensions

1. \(x_1 = -x_2 + 1.4 \)
2. \(x_1 = -0.125x_2 + 0.6 \)
3. \(x_1 = 0.4x_2 - 0.9 \)
4. \(x_1 = -0.75x_2 + 3.6 \)
5. \(x_1 = 0.16x_2 + 1 \)
6. \(x_1 = -0.4x_2 + 2 \)
7. \(x_1 = 0.6x_2 + 1 \)

\[
\begin{align*}
 x_1 &\geq -x_2 + 1.4 \quad \iff -x_1 - x_2 + 1.4 \leq 0 \quad (1) \\
 x_1 &\geq -0.125x_2 + 0.6 \quad \iff -x_1 - 0.125x_2 + 0.6 \leq 0 \quad (2) \\
 x_1 &\geq 0.4x_2 - 0.9 \quad \iff -x_1 + 0.4x_2 - 0.9 \leq 0 \quad (3) \\
 x_1 &\leq -0.75x_2 + 3.6 \quad \iff x_1 + 0.75x_2 - 3.6 \leq 0 \quad (4) \\
 x_1 &\leq -0.4x_2 + 2 \quad \iff x_1 - 0.4x_2 + 2 \leq 0 \quad (5) \\
 x_1 &\geq 0.4x_2 - 0.9 \quad \iff -x_1 + 0.4x_2 - 0.9 \geq 0 \quad (6)
\end{align*}
\]
Time Dimension

Restriction
Daily from 8:00 to 21:00

Transformation daytime
\[d_{\text{time}} = f(c_{\text{time}}) = \text{hours}(c_{\text{time}}) \times 60 + \text{minutes}(c_{\text{time}}) \]
\[c_{\text{time}} = 8:00 \Rightarrow d_{\text{time}} = 480 \]
\[c_{\text{time}} = 21:00 \Rightarrow d_{\text{time}} = 1260 \]

Constraints
\[x_3 \geq 480 \quad \Leftrightarrow \quad -x_3 + 480 \leq 0 \]
\[x_3 \leq 1260 \quad \Leftrightarrow \quad x_3 - 1260 \leq 0 \]
Matrix Representation of Service Scope

Spatial Restrictions

\[
\begin{align*}
-x_1 - x_2 + 1,4 & \leq 0 \\
-x_1 - 0,125x_2 + 0,6 & \leq 0 \\
-x_1 + 0,4x_2 - 0,9 & \leq 0 \\
x_1 + 0,4x_2 - 2 & \leq 0 \\
x_1 - 0,59x_2 - 1 & \leq 0 \\
-x_1 + 0,4x_2 - 0,9 & \leq 0 \\
x_1 + 0,75x_2 - 3,6 & \leq 0 \\
x_1 - 0,16x_2 - 1 & \leq 0 \\
x_1 - 0,4x_2 + 2 & \leq 0 \\
\end{align*}
\]

Time Restriction

\[
\begin{align*}
-x_3 + 480 & \leq 0 \\
x_3 - 1260 & \leq 0
\end{align*}
\]

Matrices

\[
\begin{pmatrix}
-1 & -1 & 0 & 1,4 \\
-1 & -0,125 & 0 & 0,6 \\
-1 & 0,4 & 0 & -0,9 \\
1 & 0,4 & 0 & -2 \\
1 & -0,59 & 0 & -1 \\
0 & 0 & -1 & 480 \\
0 & 0 & 1 & -1260
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 0,4 & 0 & -0,9 \\
1 & 0,75 & 0 & -3,6 \\
1 & -0,16 & 0 & -1 \\
-1 & -0,4 & 0 & 2 \\
0 & 0 & -1 & 480 \\
0 & 0 & 1 & -1260
\end{pmatrix}
\]
Is Context Within Service Scope?

<table>
<thead>
<tr>
<th>Definition</th>
<th>Context is within service scope if context is element of the solution set of one of the matrices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Context (2,9; 1,2; 555) (lat = 2,9; long = 1,2; time = 9:15)</td>
</tr>
<tr>
<td>Result</td>
<td>$(2,9; 1,2; 555) \in \mathbb{M}_2$</td>
</tr>
<tr>
<td></td>
<td>\Rightarrow Context is within service scope and service is valid!</td>
</tr>
</tbody>
</table>
Conclusion

Context model

- Different context models exist in literature
- Service roaming only needs context data
- Context semantics are separated in semantic layer
- Context data + semantic layer + transformation functions should maintain all information provided by existing context models

Scope representation

- Proposed representation is absolutely generic
- Linear scopes should be sufficient
- Constraint representation is preferable
Thanks for your attention!

Rüdiger Gartmann

gartmann@do.isst.fraunhofer.de