Challenges in Information Systems for Disaster Recovery and Response

Holger Kirchner, kirchner@ipsi.fraunhofer.de
Thomas Risse, risse@ipsi.fraunhofer.de

Freie Universität Berlin
3. GIITG KuVS Fachgespräch
Ortsbezogene Anwendungen und Dienste

Overview
1. Motivation
2. User Requirements
3. Application Area: Disaster Recovery and Response
4. System Architecture: Information Flow
5. Challenges
6. MIKoBOS
7. Mobile Test Lab
8. Innovations
9. Conclusion
1. Motivation

The year 2005 was marked by weather-related natural catastrophes. Roughly half of all the loss events recorded were wind storms, with costs to be borne by the world’s economies exceeding US$ 155bn.

Munich Re has long been warning that increasing global warming will be accompanied by extraordinary weather related natural catastrophes and explaining why there is a likelihood of greater loss potentials. The company’s fears were confirmed in 2005.

1. **Motivation**

Disasters and Catastrophes
- Accidents
- Earthquakes
- Floods
- Terror attacks
- Diseases
- ...

Disaster recovery and response require a timely coordination of the emergency services

In a Large-Scale Emergency Response Operation many different units are involved:
- Fire Brigade
- Police
- Emergency Medical Services e.g. Red Cross
- Technical Support Organizations e.g. THW (Technische Hilfswerk)
- Authorities at Local, Regional, National Level

2. **User Requirements**

Study on disaster and emergency management systems:
- Integration and linking of information
- Availability of communication, redundancy of links
- Fast data access
- Timeliness and updating of information
- Standardization of information

Coordinating and controlling an operation needs
- Improved Communication and Coordination within and between Organizations by digital technology

3. Application Area: Disaster Recovery and Response

Characteristics

- Not predictable
- Information provision in real time
- No precise planning
- No infrastructure

Each disaster catastrophe is unique

- Situation
- Environment
- Resources

Success and efficiency depends on a few aspects

- up-to-date information being propagated up and downstream efficiently
- effective resource management
- well-organized cooperation and coordination between the different services

4. System Architecture – Information Flow

- On-Site Wireless Network
- Operation Control
- Sensor data
- Request for Equipment
- Hazardous Gas Detected
- Request for Help
- Evacuation Plan, Map
- Fire Brigade HQ (Control Station)
- Wired/Wireless Network
- Authorities
- Emergency Site
- Squad Leader
- Emergency Warning

- Upstream
- Cross-Stream
- Downstream
- Inter-Organization
5. Challenges (some selected)

Networking
- robust communications at WAN, LAN, PAN, and BAN

Configuration
- Auto / Self configuration
- Configuration of devices
- Discovery of services

Data Management
- Reliability
- Performance

Resource Scheduling

Positioning

Security

5. Challenges – Configuration

Actors:
- Stationary (Fire Brigade HQ, Police HQ)
- Semi-mobile (Operation control)
- Mobile (frontline personnel, e.g. fire fighters)

Topics:
- Auto / Self configuration
 - Actors needs to be integrated
 - Resource conflicts (use multiple links)
- Configuration of devices
 - Integration and sync. of devices
- Discovery of services
 - Access services on demand (hazard-DDB)
5. Challenges – Data Management

Motivation:
- unreliable communication environments
- low data transmission rates at some level
- different processing and storage capabilities of the devices

Challenges:
- Reliability (complete information)
- Performance (fast information provision and access)
- Bandwidth varies -> data must be transformed, de/aggregated -> flexible data structures
6. MIKoBOS Functions

Operation Control (TEL) Squad Leader

Upstream Cross-Stream
Downstream Inter-Organization

6. MIKoBOS Functions – transfer FMS messages

Command Control/HQ Operation Control (TEL) Squad Leader

Upstream Cross-Stream
Downstream Inter-Organization
6. MIKoBOS Functions – transfer FMS messages

Upstream Cross-Stream
Downstream Inter-Organization

Squad Leader Operation Control (TEL)

Squad Leader

Upstream Cross-Stream
Downstream Inter-Organization

Squad Leader Operation Control (TEL)
6. MIKoBOS Functions – hazard-DB access

Squad Leader Operation Control (TEL)

- Upstream
- Cross-Stream
- Downstream
- Inter-Organization

8. Outlook/Innovations

- Location/context-based service discovery
- Database management: “Flying elephants”
- Distributed data storage based on grid computing and peer2peer/p-grid (Enode)
- Proactive information provision (Prefetching, Prefetching, and caching/boarding)
- Indoor positioning (using auto in&setup)
9. Conclusion

MIKoBOS Integrated communication and information system

- To develop an IS for Disaster Recovery and Response several IT research disciplines need to work together
- Information flow (up-, down-, cross stream, inter-org)
- Research areas (challenges)
 - Networking
 - Configuration
 - Data Management
 - Resource Scheduling
 - Positioning
 - Security

Thank you very much for your attention!